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ABSTRACT

This paper introduces a power estimation scheme and gen-

erated results of SoC (System-on-Chip) fabricated with dif-

ferent process nodes extending to very deep submicron tech-

nology. Different power modeling strategies are used to esti-

mate power for analog and digital circuits. According to the

analysis results, ultra low power analog components are key

to successful biomedical SoC design if more advanced fab-

rication technology is utilized. Meanwhile, the digital part

should be designed barely enough to serve the target appli-

cation. Integrating more dedicated digital hardware accelera-

tors can further reduce the total power consumption by low-

ering the working frequency of system processor. The goal

of this paper is to provide a quantitative scheme to estimate

the power consumption when SoC is fabricated with different

process technologies. Then a suitable technology could be

selected to manufacture the SoC for biomedical usage.

Index Terms— Biomedical, SoC, power estimation, very

deep submicron, ECG, EEG, ECoG

1. INTRODUCTION

Applying electronic devices for health care purpose has

drawn great interests in recent years. On the one hand, the

average age of worldwide population is getting old and the in-

dustry is motivated to invent for the future. On the other hand

the mature process of fabricating semiconductor integrated

circuit(IC) makes it possible to provide a cost-effective prod-

uct for biomedical applications. Large-scaled devices, like

X-ray imaging, ultrasonic imaging, and magnetic resonance

imaging (MRI) have proven their success in diagnosing and

treating human diseases. Recently, more personalized de-

vices like sphygmomanometer, blood glucose meter, and ear

thermometer have successfully been used as the point-of-care

(POC) means for a person or a family. It is promising that

existing devices will still prevail and some other devices may

be enhanced, integrated or invented to provide a better health

care quality.

Table 1. Power model groups

Baseline part DSP part
·amplifier ·processor

·ADC ·internal SRAM

·stimulator

·wireless (transmitter, re-

ceiver)

·other dedicated hard-

ware (ex: digital filter,

FFT)

SoC development for biomedical application is quite chal-

lenging. Among all the challenges, power consumption is one

of the most significant aspects to be carefully explored in the

progress of implementation. Analog circuits are the front end

to record signals from human body. Data acquisition is nor-

mally done by first-stage amplifier whose input impedance

is so high as to capture the tiny voltage potential from mea-

suring points of human body. Some systems transferred the

measured samples to a computer for further processing af-

ter applying an analog-to-digital conversion (ADC) process.

For mobile application, it is desirable to acquire the signal

on-the-spot and do signal processing in embedded way. To

process the signal digitally is an emerging trend in electronic

biomedical devices. In order to conduct system power analy-

sis for this kind of systems, we divide the power models into

two groups as shown in Table 1. Two different strategies are

used to deduce the power models. The first one is clustering

analysis based on existing literatures and is mostly used to

derive the model for baseline group. The second method is

curve fitting based on digital cell libraries and memory com-

pilers for various process technologies covering 350nm to

65nm. Resorting to the fitting result, the power model of very

deep submicron technology, like 28nm, is estimated. Based

on the estimation results of the two power model groups, the

power specifications of the SoC fabricated with 350nm, 90m,

and 28nm technologies are calculated. Estimation results are

also compared with the taped-out 350nm SoC as a case study.

The reminder of this paper is organized as follows. Prelimi-

nary background is first provided followed by power model

elaboration steps. Cases based on different process technolo-

gies are then described and insights of the power estimation

results are discussed. Finally the conclusion is given.
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2. POWER MODELS

Based on the survey of literatures [1, 2, 3] etc. and also

the experiences gained from the analog designers, the power

consumption of the analog design is loosely correlated to fab-

rication process technology. [1] is the best example to reflect

this phenomenon where 0.8μm process technology is used

to achieve an ultra low power amplifier design. Thus to pre-

dict analog components’ power is not similar to the strongly

process dependent digital components which will be pre-

sented later. Therefore we propose a statistic-based scheme

SCCI (Sort-Cluster-Correlation-Interpolation) to solve this

dilemma. Steps in SCCI are explained in subsection 2.1. The

second power group is the DSP group, where currently two

major components, the RISC processor and internal SRAM,

are analyzed for their power portraits. Power for components

belong to DSP group demonstrates a significant dependency

on the fabrication technology.

2.1. Design components - Baseline group

SCCI scheme is used to build the power model for baseline

components. The procedure of the scheme is described as

follows:

Table 2. Procedure of SCCI scheme

For each component in baseline group

1) Sort the normalized power coefficients

2) Cluster the sorting results into 3 subgroups us-

ing K-means algorithm and record the center of

gravity of each subgroup

3) If there is no previous clustering result, goto to

step 6

4) Correlation coefficient calculated with the 2

center of gravity sets of current and previous clus-

tering result.

5) If correlation coefficient > predefined converg-

ing threshold, break the loop and take the final

center of gravity set as output

6) Interpolate the sorting result, go to 2)

The input data set to SCCI is first normalized with the follow-

ing factors: voltage (square value), channel count, amplifier

bandwidth, ADC sampling rate and ADC precision bits. The

raw data to be normalized are extracted from existing litera-

tures ([3] [4] and more) and commercial products’ datasheets,

for example: TI’s CC2430[5], NORDIC’s nRF24LE1[6]. We

take 0.98 as the converging threshold for correlation coeffi-

cient check where similarity between two center of gravity

sets is ensured. This threshold provides a trade-off mecha-

nism between converging loop count and the stability of the

clustering result. In our analysis, the SCCI procedure for

each baseline components all converges within 3 iteration

loops by executing the implemented Matlab codes. The 3

elements in SCCI output gravity set are labeled separately as

best case (BC), typical case (TC), and worst case (WC) for

analog power consumption estimation. Table 3 lists the anal-

ysis result for each baseline component and the unit for each

row is formed according to the normalization process. The

coefficients listed in Table 3 will be used in the case analysis

and elaboration section to estimate total system power.

Table 3. SCCI analysis result for baseline group

component BC TC WC unit

amplifier 5.3342 40.6234 1930.89

nW/(V 2 ·
channel ·
Hz)

ADC 0.282 24.0357 38.9821

nW/(V 2 ·
channel ·
Hz · bit)

stimulator 8.24 15.7302 54.387
μW/(V 2 ·
channel)

TX

0∼2dbm
1244.44 3650.00 5527.78

μW/(V 2 ·
channel)

RX -100∼
-90dbm

1204.44 3505.00 5736.11
μW/(V 2 ·
channel)

2.2. Design components - DSP group

In our analysis, DSP group includes the RISC processor and

the internal SRAM. The digital cell libraries and SRAM com-

pilers for different UMC process technologies are used for the

evaluation flow. As for the digital cell libraries, process nodes

including 350nm, 250nm, 180nm, 130m, 90nm and 65nm are

used to synthesize the RTL codes of OpenRISC implemen-

tation, OR1200[7]. OR1200 is an open source soft IP core

available from the website of OPENCORE.org. It is a 32-bit

Harvard architecture RISC core which is regarded compara-

ble to the ARM9 processor. We use it to deduce the trend of

power when process node migrates. Actually we have taped

out a 350nm SoC where OR1200 is adopted as the system

controller. The procedures to get power model of these two

components are described in 2.2.1 and 2.2.2.

2.2.1. Power model of RISC processor

Synthesis tool from EDA vendor, Synopsys, is used to syn-

thesize OR1200 with clock constraint at 0.5, 1, 1.25, 1.67,

2.5, 5, 10, 20, 50, and 100 MHz. We select finer resolution in

lower frequency range because our application aims to work

at lower frequency range owing to power consideration. The

synthesis result is shown in Figure 1. The topmost curve is

350nm process node while the lowest is 65nm. The slope of

the curve decreases accordingly when the process node be-

comes more advanced. First order fitting is done to get the fit-

ting slope. Then for estimating the process node whose power

characteristics are not available, a third order (cubic) fitting

function is used to do nonlinear regression in Matlab. Higher
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Fig. 1. RISC power vs. frequency for different process nodes

Fig. 2. RISC power coefficients vs. process nodes

order fittings generate similar results. With the regression re-

sult, the coefficient for 28nm could be estimated. However,

the estimated result based on all the available process nodes

is too optimistic for 28nm process and also the fitting residues

are too large. A more reasonable result is achieved with only

the deep submicron nodes from 180nm to 65nm used as fit-

ting inputs. The final fitting results are listed in Table 4 and

the fitting curve is depicted by Figure 2.

Table 4. Estimated coefficients for deep submicron

process power coefficient

180nm 29.3595 μW/(V 2 ·MHz)
130nm 23.6716 μW/(V 2 ·MHz)
90nm 16.29 μW/(V 2 ·MHz)

65nm 11.2433 μW/(V 2 ·MHz)
28nm 4.2203 μW/(V 2 ·MHz)

The coefficients in Table 4 are used in later case analy-

sis. Note, there are several process characteristics selectable

for deep submicron process, low leakage (LL) process out-

performs other process choices, for example standard process

(SP), within our fitting range from 0.5∼100MHz working fre-

quency. Therefore the above coefficients are generated based

on LL process.

2.2.2. Power model of internal SRAM

SRAM compilers available for UMC foundry cover process

nodes from 250nm to 65m. 350nm is absent therefore its

power model coefficients are also gained from fitting result.

Originally we fit SRAM power with voltage-normalized data

set. However, the residues of the fitting result are too large to

be accepted. Thus we adopt non-voltage-normalized data set

to get the necessary estimation coefficients. Table 5 shows

the fitting result for 1-port SRAM for different sizes. Note

the unit of the coefficients does not contain a V 2 term.

Table 5. Estimated power model coefficients

SRAM size(bits), unit: μW/MHz
process 128x32 256x32 512x32 1024x32

350nm 111.4878 125.5074 146.5372 176.8799

250nm 36.0238 39.9643 46.095 56.8743

180nm 14.9297 16.2361 18.4959 23.6662

130nm 9.0995 9.8107 11.1786 14.6322

90nm 7.0272 7.6223 8.7749 11.4492

65nm 5.9446 6.4963 7.5363 9.7386

28nm 3.4441 3.8053 4.4554 5.6637

It could be seen that the bigger the SRAM size is the larger

the power coefficient becomes. In addition, the power in-

creasing ratio is smaller than the ratio of size increment.

Likewise coefficients in Table 5 are used to model SRAM

power characteristics for our case analysis in the following

section.

3. CASE ANALYSIS AND ELABORATION

There has already been a very successful case proven by

Medtronic co.[8] where deep brain stimulation is conducted

to treat the Parkinson’s disease. The estimated power of the

Medtornic device serves as a good reference for state-of-the

art power management for electronic biomedical systems.

Other implemented and imaginary cases are also analyzed in

following subsections.

3.1. Deep brain stimulation

According to the information provided by the surgeons, work-

ing period of the deep brain stimulator device is about 5 years.

Besides, the stimulation pattern is about 100∼200Hz with a

60∼150μs turn-on period for applying 3V∼5V voltage stim-

ulation. The impedance of the human brain is about 1350Ω.

Assume that device has a battery with hundreds of mAh ca-

pacity. The power consumption of such device will be around

200∼300 μW. This level of power consumption set a required

specification for device to be implanted in human body.
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3.2. Designed and planned SoC chips

We designed our first SoC with 350nm process node for pre-

liminary animal experiments. The chip should be smaller

enough to be mounted on the mouse. The SoC specifications

are summarized in Table 6. These specifications are used to

conduct the power estimation for our planned SoC chip.

Table 6. Targeted SoC specifications

component quantity specification

amplifier 16 bandwidth 200Hz

ADC 1 sampling rate 6.4K

stimulator 8 0∼5V

RF TX/RX 1/1 -5dbm/-90dbm

processor 1 clock frequency 20MHz

SRAM 2 capacity 1024x32 bits

3.2.1. Previously developed 350nm SoC

The taped-out 350nm chip has similar specifications of Ta-

ble 6. The power of digital portion of this chip is 1.87 times

more than a single RISC processor. This 1.87 overhead ratio

is taken into account in power calculation. Assume that the

active period of the wireless TX/RX is 1%. The power of es-

timated 350nm is shown in first column of Table 7 with BC

analog components. Based on the simulation result, power

consumption of our developed analog components are smaller

than the BC ones, so chances that our chip outperforms the

estimated one.

3.2.2. Imaginary 90 and 28nm SoC

Table 7. Power estimated from derived models (unit: μW )

power 3V@350nm 1V@90nm 0.9V@28nm

baseline(1) 5875.98 652.89 528.84

RISC(2) 48548.64 611.18 158.34

(1)+(2) 54424.62 1264.06 687.18

SRAM(3) 7075.20 457.97 226.55

(1)+(2)+(3) 61499.81 1722.03 913.73

BC analog components are used to construct power es-

timation in Table 7. Judging from above table, power re-

duction achieved by moving from 350nm to 90nm is much

higher than that from 90nm to 28nm. That is the ratio 35.7

for 350nm to 90nm vs. 1.9 for 90nm to 28nm. Therefore,

to fabricate SoC with more advanced technology helps to cut

down total power drastically. However, the deeper the pro-

cess node becomes the less the extra power reduction gained.

Furthermore, analog components become power dominant

while more advanced technology is adopted for fabrication.

Note, even with very deep submicron technology, like the

28nm process node, power consumption of the planned SoC

is about 4 times of the estimated figure of Medtronic device

(200∼300μW). This reflects the challenge for producing a

realistic electronic medical product for implantation purpose

where the battery should not changed frequently. As for

external noninvasive electronic medical devices, the power

levels provided by 90nm or 28nm SoC meet the requirement

that the device keeps working for several months.

4. CONCLUSION

Based on the power estimation outcome, it is important to

have best case analog components integrated in SoC since

these components dominate the power consumption when

fabricating the SoC with more advanced technology. Mean-

while, digital part should keep its working frequency as low

as possible while serving the desired application. Never over

design and treasure every pieces of the energy from the bat-

tery. Besides, if more digital dedicated hardware integrated

to accelerate the DSP algorithm, the working frequency of

the RISC could be further reduced. The capacity and quantity

of internal SRAM should also be carefully chosen to keep

the power consumed in memory within a reasonable level.

Wisely selecting various design paradigms to conquer the

design difficulties is very important for biomedical system

design. This work provides a quantitative power estima-

tion scheme by considering both analog and digital circuits.

Power consumption can be estimated in advance in order to

reduce the risk of going beyond the power budget of the SoC

project for biomedical applications.
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